Skip to main content

Flow Measurement

Accurate compressed air flow measurement is fundamental for audits, control, and system optimization.

Measurement Technologies

Thermal Mass

The most common method for compressed air:

                    Temperature
sensor

═══════════════════[●]═══════════════════
Heated
element

┌────┴────┐
│ Control │
│ ΔT │
└─────────┘

Principle: Measures the energy required to maintain a constant temperature difference. Higher flow equals more cooling, more energy required.

AdvantageDisadvantage
Measures mass flow directlySensitive to humidity
Wide range (100:1)Sensitive to gas composition
Low pressure dropRequires calibration
No moving partsModerate response time

Vortex

                    Bluff body

═══════════════════[▼]═══════════════════

Vortices
○ ○
○ ○
○ ○

Pressure/piezo
sensor

Principle: A body breaks the flow creating vortices. Vortex frequency is proportional to velocity.

AdvantageDisadvantage
Very robustRequires minimum flow
Low maintenanceSensitive to vibrations
Long-term stabilityStraight runs required
Wide temperature rangeNot for low flows

Differential Pressure

    P1                 P2
▼ ▼
═══════[╳]═════════════
Orifice
plate

$$\Delta P = P_1 - P_2$$
$$Q \propto \sqrt{\Delta P}$$
AdvantageDisadvantage
EconomicalLimited range (4:1)
SimpleHigh permanent pressure drop
Well understoodOrifice wear
Easy verificationSensitive to upstream conditions

Ultrasonic (Time of Flight)

              Transducer A

═════════════╱═══════════════


═════════╱═════════════════

Transducer B

Time A→B ≠ Time B→A (due to flow velocity)
AdvantageDisadvantage
Non-invasive (clamp-on)High cost
No pressure dropSensitive to deposits
Wide rangeCritical installation
BidirectionalComplex calibration

Meter Selection

By Application

ApplicationRecommended Technology
Temporary auditUltrasonic clamp-on
Permanent monitoringThermal mass insertion
BillingThermal mass inline
High temperatureVortex
Wet gasesVortex
Low flowThermal mass

Selection Table

FactorThermal MassVortexΔPUltrasonic
Range★★★★★★★★★★★★★★★
Accuracy★★★★★★★★★★★★★★★
Cost★★★★★★★★★★★★★★
Installation★★★★★★★★★★★★★★★
Maintenance★★★★★★★★★★★★★★★★

Installation

Straight Run Requirements

              Elbows, valves, etc.

════════════════╪════════[M]════════════
│ │
├──10D───┤──5D──┤
│ │ │
Upstream Meter Downstream
Upstream DisturbanceStraight Run Required
90° elbow10-15 D
Two elbows in plane15-20 D
Partially open valve20-25 D
Reduction10-15 D
Expansion15-20 D
Compressor25-30 D

D = Pipe internal diameter

Location in System

    Dry Side vs. Wet Side:

Compressor ══> Aftercooler ══> Dryer ══> Distribution
│ │
Wet side Dry side
(avoid) (preferred)
LocationAdvantageDisadvantage
After dryerDry air, stable readingDoesn't include purge
Before dryerTotal flowHumidity may affect
At each compressorIndividual controlMultiple meters
At headerTotal flow producedIncludes internal leaks

Units and Conversions

Reference Conditions

Standard conditions (SCFM, Nm³/h):
- Pressure: 1 atm (14.7 psia, 1.01325 bar)
- Temperature: Varies by standard

SCFM (US): 60°F (15.6°C)
Nm³/h (Europe): 0°C (32°F)
FAD: Conditions at compressor inlet

SCFM ↔ Nm³/h Conversion

  • 1 SCFM=1.699 Nm3/h1 \text{ SCFM} = 1.699 \text{ Nm}^3\text{/h} (approximate)
  • 1 Nm3/h=0.589 SCFM1 \text{ Nm}^3\text{/h} = 0.589 \text{ SCFM}

For exact conversion:

Nm3/h=SCFM×460+60460+32×28.321000\text{Nm}^3\text{/h} = SCFM \times \frac{460 + 60}{460 + 32} \times \frac{28.32}{1000}

Correction for Conditions

Qcorrected=Qmeasured×PactualPstd×TstdTactualQ_{\text{corrected}} = Q_{\text{measured}} \times \frac{P_{\text{actual}}}{P_{\text{std}}} \times \frac{T_{\text{std}}}{T_{\text{actual}}}

Example:

  • Measured: 1000 CFM at 100 psig, 100°F
  • Corrected to standard (14.7 psia, 60°F):
SCFM=1000×114.714.7×520560=7,248 SCFMSCFM = 1000 \times \frac{114.7}{14.7} \times \frac{520}{560} = 7{,}248 \text{ SCFM}

Calibration and Verification

Calibration Frequency

Meter TypeRecommended Interval
Thermal massAnnual
Vortex2-3 years
ΔP with orificeAnnual (orifice inspection)
UltrasonicAnnual

Field Verification

MethodAccuracyComplexity
Comparison with another meter±2-5%Low
Tank capacity method±5%Medium
Pump-up test±3%Medium
Accredited laboratory±0.5-1%High

Tank Method

  1. Isolate tank from system
  2. Depressurize tank
  3. Measure time to fill from P1P_1 to P2P_2
  4. Calculate flow:
Q (SCFM)=V×(P2P1)14.7×tQ \text{ (SCFM)} = \frac{V \times (P_2 - P_1)}{14.7 \times t}

Where:

  • VV = Tank volume (ft³)
  • PP = Pressures (psia)
  • tt = Time (minutes)

Common Errors

ErrorConsequenceSolution
Insufficient straight runsErroneous readingsUse flow conditioners
Meter on wet sideDrift, damageRelocate after dryer
Incorrect unitsIncomparable dataStandardize to SCFM or Nm³/h
No P/T compensationError up to 20%Use compensated meter
Incorrect orientationMeasurement errorFollow manual
Quick Verification

Compare measured flow with compressor's theoretical flow. If it differs by more than 20%, investigate meter installation or possible leaks in the system.