Skip to main content

Baselining & Data Logging

Establishing a baseline allows you to quantify improvements and detect degradation in the compressed air system.

What is a Baseline

The baseline is a snapshot of current system performance:

                    BASELINE

Consumption ────────┼──────────────────────
(kWh) │ Improvement implemented
│ │
│ ┌──────┴──────┐
████████████████████│█████│░░░░░░░░░░░░░│
│ │ Measurable │
│ │ savings │
────────────────────┼─────┴─────────────┴────► Time
Before After

Baseline Parameters

Required Data

ParameterUnitFrequency
Electrical consumptionkWhDaily
Air flowCFM-hContinuous
System pressurepsi, barContinuous
Operating hourshDaily
Production (reference)unitsDaily

Measurement Period

Operation TypeMinimum Period
Continuous production 24/71 week
Single shift, 5 days2 weeks
Variable production4 weeks
Seasonal3-6 months

Performance Indicators

Key KPIs

┌─────────────────────────────────────────────────────────┐
│ KEY PERFORMANCE INDICATORS (KPIs) │
├─────────────────────────────────────────────────────────┤
│ │
│ 1. SPECIFIC POWER │
│ kW / 100 CFM (or kW / m³/min) │
│ Target: < 20 kW/100 CFM │
│ │
│ 2. UNIT COST │
│ $/1000 CF produced │
│ Benchmark: $0.20-0.30 │
│ │
│ 3. ENERGY INTENSITY │
│ kWh / unit of production │
│ Depends on process │
│ │
│ 4. LEAK FACTOR │
│ % of total consumption │
│ Target: < 10% │
│ │
└─────────────────────────────────────────────────────────┘

Specific Power Calculation

SP=kWcompressorsQtotal/100SP = \frac{\sum kW_{\text{compressors}}}{Q_{\text{total}} / 100}

Example:

  • Compressor 1: 55 kW, 250 CFM
  • Compressor 2: 45 kW, 200 CFM
  • Compressor 3: 30 kW, 150 CFM (standby, 0 kW, 0 CFM)
SP=55+45(250+200)/100=1004.5=22.2 kW/100 CFMSP = \frac{55 + 45}{(250 + 200) / 100} = \frac{100}{4.5} = 22.2 \text{ kW/100 CFM}

Data Logging

Sampling Frequency

Sampling vs. Averages:

Sample every 1 second:
│ ●
│ ● ●
│ ● ● ●
│ ● ● ● ●
│● ●● ●
└──────────────── t

Average every 1 minute:
│ ████████
│ ████████
└──────────────── t

The average hides peaks and valleys
ParameterSamplingStorage
Pressure (control)1 sec1 min average
Flow1 sec1 min average
Power1 sec1 min average
Temperature10 sec5 min average
Dew point1 min15 min average

Importance of Fast Sampling

Pressure drop event:

1 min sampling: 1 sec sampling:
│ │
100├──────────────── 100├────────●
│ │ ╲
90├──────────────── 90├────────╲
│ │ ●
80├──────────────── 80├──────────╲●
│ (doesn't detect the spike) │ Detects the
└────────────────── t └──drop────── t

The problem's cause may be invisible with slow sampling.

Data Normalization

By Production

Intensity = Air kWh / Units produced

Month 1: 100,000 kWh / 50,000 units = 2.0 kWh/unit
Month 2: 95,000 kWh / 45,000 units = 2.1 kWh/unit

Got worse (even though kWh dropped)

By Ambient Conditions

Temperature correction:

CFMcorrected=CFMmeasured×TstandardTactualCFM_{\text{corrected}} = CFM_{\text{measured}} \times \sqrt{\frac{T_{\text{standard}}}{T_{\text{actual}}}}

Example:

  • Measured: 1000 CFM at 95°F (35°C)
  • Standard: 68°F (20°C)
CFMcorr=1000×528555=976 CFMCFM_{\text{corr}} = 1000 \times \sqrt{\frac{528}{555}} = 976 \text{ CFM}

By Discharge Pressure

Higher pressure means higher energy consumption:

kWnormalized=kWmeasured×(PstandardPmeasured)0.286kW_{\text{normalized}} = kW_{\text{measured}} \times \left(\frac{P_{\text{standard}}}{P_{\text{measured}}}\right)^{0.286}

Example:

  • Measured: 75 kW at 115 psig
  • Normalize to 100 psig:
kWnorm=75×(100115)0.286=72.1 kWkW_{\text{norm}} = 75 \times \left(\frac{100}{115}\right)^{0.286} = 72.1 \text{ kW}

Data Analysis

Load Profile

Typical 24-hour profile:

kW

80├ ████████
│ █████████████████
70├ ██████████████████████
│ ███████████████████████████
60├ ██████████████████████████████████
│ ████████████████████████████████████████
50├ ████████████████████████████████████████████
│████ ████
40├

└────┴────┴────┴────┴────┴────┴────┴────┴────┴───► Hour
0 3 6 9 12 15 18 21 24
↑ ↑
Night minimum Production peak
(leaks + base)

Leak Calculation

% LeaksMinimum night consumptionPeak consumption×100\% \text{ Leaks} \approx \frac{\text{Minimum night consumption}}{\text{Peak consumption}} \times 100

Example:

  • Night consumption (0-5 AM): 40 kW
  • Peak consumption (9 AM-5 PM): 80 kW
% Leaks4080×100=50%\% \text{ Leaks} \approx \frac{40}{80} \times 100 = 50\%

This is very high! Target: <10-15%< 10\text{-}15\%

Baseline Report

Minimum Content

SectionContent
Measurement periodDates, duration
Equipment includedInventory, capacities
Measured dataTables, graphs
Calculated KPIsSP, costs, efficiency
ConditionsProduction, weather
ObservationsAnomalies, events

Summary Example

════════════════════════════════════════════════════════════
BASELINE - COMPRESSED AIR SYSTEM
Period: March 1-7, 2024
════════════════════════════════════════════════════════════

EQUIPMENT:
3 rotary screw compressors: 2×100 HP + 1×75 HP
2 refrigerated dryers
Total installed capacity: 275 HP

MEASUREMENTS:
Total period consumption: 25,200 kWh
Average flow: 620 CFM
Average pressure: 105 psig
Operating hours: 168 h

INDICATORS:
Specific power: 21.5 kW/100 CFM
Unit cost: $0.28/1000 CF
Estimated leak factor: 35%

COMPARISON WITH BENCHMARK:
Current SP: 21.5 kW/100 CFM
Benchmark: 18.0 kW/100 CFM
Potential: 16% improvement

════════════════════════════════════════════════════════════

Continuous Monitoring

Energy Management System

┌─────────────────────────────────────────────────────────┐
│ CONTINUOUS MONITORING SYSTEM │
│ │
│ Meters ─────────┐ │
│ ▼ │
│ ┌─────────┐ │
│ │ Gateway │ │
│ └────┬────┘ │
│ ▼ │
│ ┌───────────────┴───────────────┐ │
│ │ DATABASE │ │
│ │ Historical data, trends │ │
│ └───────────────┬───────────────┘ │
│ │ │
│ ┌───────────┼───────────┐ │
│ ▼ ▼ ▼ │
│ Dashboard Reports Alerts │
│ │
└─────────────────────────────────────────────────────────┘

Automatic Alerts

ConditionThresholdAction
SP greater than benchmark +10%22 kW/100 CFMEmail to operations
Leaks greater than 20%Night consumptionMaintenance alert
Low pressureless than 95 psigAlarm
Degraded efficiency5% trendWeekly report
Continuous Improvement

The baseline is not static. Update after each significant improvement and compare against the previous baseline to quantify the real benefit.